Synergistic effects of PA (S184N) and PB2 (E627K) mutations on the increased pathogenicity of H3N2 canine influenza virus infections in mice and dogs.

PA (S184N) 和 PB2 (E627K) 突变对 H3N2 犬流感病毒感染小鼠和犬的致病性增强具有协同作用

阅读:11
作者:Xiao Xiangyu, Wang Xinrui, Xu Fengpei, Liang Yanting, Luo Yi, Li Shoujun, Zhou Pei
As companion animals, dogs are susceptible to various subtypes of influenza A virus (IAV), with the H3N2 and H3N8 subtypes of canine influenza virus (CIV) stably circulating among canines. Compared to the H3N8 CIV, the H3N2 CIV is more widely prevalent in canine populations and demonstrates increased adaptability to mammals, potentially facilitating cross-species transmission. Therefore, a comprehensive elucidation of the mechanisms underlying H3N2 CIV adaptation to mammals is imperative. In this study, we serially passaged the GD14-WT strain in murine lungs, successfully establishing a lethal H3N2 CIV infection model. From this model, we isolated the lethal strain GD14-MA and identified the key lethal mutations PA(S184N) and PB2(E627K). Moreover, the GD14-ma[PA(S184N)+PB2(E627K)] strain exhibited markedly enhanced pathogenicity in dogs. Viral titers in lung tissues from infected dogs and mice showed that GD14-ma[PA(S184N)+PB2(E627K)] does not increase its pathogenicity to mice and dogs by upregulating viral titers compared to the GD14-WT strain. Notably, sequence alignments across all H3N2 IAVs showed an increasing prevalence of the PA (S184N) and PB2 (E627K) mutations from avian to human hosts. Finally, single-cell RNA sequencing of infected mouse lung tissues showed that GD14-ma[PA(S184N)+PB2(E627K)] effectively evaded host antiviral responses, inducing a robust inflammatory reaction. Considering the recognized role of the PB2 (E627K) mutation in the mammalian adaptation of IAVs, our findings underscore the importance of ongoing surveillance for the PA (S184N) mutation in H3N2 IAVs.IMPORTANCESince the 21st century, zoonotic viruses have frequently crossed species barriers, posing significant global public health challenges. Dogs are susceptible to various influenza A viruses (IAVs), particularly the H3N2 canine influenza virus (CIV), which has stably circulated and evolved to enhance its adaptability to mammals, including an increased affinity for the human-like SAα2,6-Gal receptor, posing a potential public health threat. Here, we simulated H3N2 CIV adaptation in mice, revealed that the synergistic PA(S184N) and PB2(E627K) mutations augment H3N2 CIV pathogenicity in dogs and mice, and elucidated the underlying mechanisms at the single-cell level. Our study provides molecular evidence for adapting the H3N2 CIV to mammals and underscores the importance of vigilant monitoring of genetic variations in H3N2 CIV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。