NUDT21 lactylation reprograms alternative polyadenylation to promote cuproptosis resistance.

NUDT21 乳酸化重编程替代多聚腺苷酸化,以促进铜凋亡抵抗

阅读:6
作者:Lin Jinlong, Yin Yixin, Cao Jinghua, Zhang Yiyang, Chen Jiewei, Chen Rixin, Zou Bingxu, Huang Cijun, Lv Yongrui, Xu Shuidan, Yang Han, Lin Peng, Xie Dan
Alternative polyadenylation (APA) is critical for shaping transcriptome diversity and modulating cancer therapeutic resistance. While lactate is a well-established metabolic signal in cancer progression, its role in APA regulation remains unclear. Here, we demonstrate that L-lactate-induced lactylation of NUDT21 drives transcriptomic reprogramming through APA modulation. NUDT21 lactylation enhances its interaction with CPSF6, facilitating CFIm complex formation and inducing 3' untranslated region (UTR) lengthening of FDX1. Extension of the FDX1 3' UTR attenuates its protein output, thereby conferring resistance to cuproptosis in esophageal squamous cell carcinoma (ESCC). Furthermore, we identify AARS1 as the lactylation "writer" catalyzing NUDT21 K23 lactylation, and HDAC2 as its enzymatic "eraser". Clinically, elevated levels of both LDHA and NUDT21, as well as increased K23-lactylated NUDT21, are associated with reduced FDX1 expression and worse prognosis in ESCC patients. Notably, combined targeting of the lactate-NUDT21-FDX1-cuproptosis axis with the clinical LDHA inhibitor stiripentol and the copper ionophore elesclomol synergistically suppressed tumor growth. Collectively, our work identifies lactylated NUDT21 as a critical factor linking cellular metabolism to APA and proposes a promising therapeutic strategy for ESCC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。