Previous studies on acute kidney injury (AKI) have predominantly focused on renal tubular cells, while the specific role of fibroblasts has been largely neglected. Recent evidence shows that PU.1/Spi1, a transcription factor, is an important modulator of fibroblast activation, whereas pharmacological and genetic silencing of PU.1/Spi1 disrupts the fibrotic network and reprograms activated fibroblasts into quiescent fibroblasts. In this study we investigated whether and how PU.1/Spi1 regulated renal fibroblast activation during AKI. An AKI model was established in male mice by clamping bilateral renal arteries for 30âmin. Mice were sacrificed and blood and kidney samples were collected 48âh after the surgery. We showed that the expression level of PU.1/Spi1 was significantly upregulated in ischemia/reperfusion (I/R)-induced AKI and PU.1/Spi1 was specifically localized in fibroblasts. Meanwhile, we observed that a massive activation of fibroblasts occurred at the early stage of AKI. PU.1/Spi1 knockout significantly attenuated the activation of fibroblasts along with the decreased release of inflammatory factors and tubular injury. Bioinformatic analysis revealed that GATA binding protein 2 (Gata2), an evolutionarily conserved gene, might be a downstream target gene of PU.1/Spi1. In primary cultured mouse kidney fibroblasts subjected to hypoxia/reoxygenation (H/R), the expression levels of PU.1/Spi1, Gata2 and α-SMA were significantly upregulated. Activated fibroblasts exhibited elevated proliferative capacity, evidenced by upregulated proliferating cell nuclear antigen (PCNA) and cell cycle proteins such as cyclin B1 and cyclin D3. The secretion of inflammatory factors was increased in the activated fibroblasts. Conditioned medium from H/R-treated fibroblasts induced tubular cell injury and increased apoptosis. Using chromatin immunoprecipitation and promoter-luciferase assays, we demonstrated that PU.1/Spi1 was able to bind to the promoter region of Gata2 and enhanced its transcription. Our results show that interstitial fibroblasts are activated at the early stage of I/R-induced AKI and involved in renal injury. Upregulated PU.1/Spi1 stimulates fibroblast activation by upregulating its downstream gene Gata2. Inhibiting the activation of fibroblasts may have a beneficial effect on AKI.
PU.1/Spi1 exacerbates ischemia-reperfusion induced acute kidney injury via upregulating Gata2 and promoting fibroblast activation.
PU.1/Spi1 通过上调 Gata2 和促进成纤维细胞活化,加剧缺血再灌注引起的急性肾损伤
阅读:6
作者:Zong Chen, Xu Guo-Li, Ning Ming, Li Jing-Yao, Wang Xin, Guo Heng-Jiang, Zhang Li-Hong, Zhou Li, Xu Chen, Yang Zhen-Hao, Lu Li-Min, Niu Jian-Ying
| 期刊: | Acta Pharmacologica Sinica | 影响因子: | 8.400 |
| 时间: | 2025 | 起止号: | 2025 Aug;46(8):2251-2266 |
| doi: | 10.1038/s41401-025-01530-w | 研究方向: | 细胞生物学 |
| 疾病类型: | 肾损伤 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
