The Wingless/Int-1 (WNT) signaling network is essential to orchestrate central physiological processes such as embryonic development and tissue homeostasis. In the currently held tenet, WNT/β-catenin signaling is initiated by WNT-induced recruitment of Frizzleds (FZDs) and LRP5/6 followed by the formation of a multiprotein signalosome complex. Here, we use bioluminescence resonance energy transfer (BRET) to show that different WNT paralogs dynamically trigger FZD-LRP6 association. While WNT-induced receptor interaction was independent of C-terminal LRP6 phosphorylation, it was allosterically modulated by binding of the phosphoprotein Dishevelled (DVL) to FZD. WNT-16B emerged as a ligand of particular interest, as it efficiently promoted FZD-LRP6 association but, unlike WNT-3A, did not lead to WNT/β-catenin signaling. Transcriptomic analysis further revealed distinct transcriptional fingerprints of WNT-3A and WNT-16B stimulation in HEK293 cells. Additionally, single-molecule tracking demonstrated that, despite increasing FZD(5) and LRP6 confinement, WNT-16B stimulation did not result in formation of higher-order receptor clusters, in contrast to WNT-3A. Our results suggest that FZD-WNT-LRP5/6 complex formation alone is not sufficient for the initiation of WNT/β-catenin signaling. Instead, we propose a two-step model, where initial ligand-induced FZD-LRP6 association must be followed by receptor clustering into higher-order complexes and subsequent phosphorylation of LRP6 for efficient activation of WNT/β-catenin signaling.
WNT-induced association of Frizzled and LRP6 is not sufficient for the initiation of WNT/β-catenin signaling.
WNT 诱导的 Frizzled 和 LRP6 的结合不足以启动 WNT/β-catenin 信号传导
阅读:6
作者:Voss Jan Hendrik, Koszegi Zsombor, Yan Yining, Shorter Emily, Grätz Lukas, Lanner Johanna T, Calebiro Davide, Schulte Gunnar
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 May 24; 16(1):4848 |
| doi: | 10.1038/s41467-025-60096-7 | 研究方向: | 信号转导 |
| 信号通路: | Wnt/β-Catenin | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
