Elevated Histone Lactylation Mediates Ferroptosis Resistance in Endometriosis Through the METTL3-Regulated HIF1A/HMOX1 Signaling Pathway.

组蛋白乳化水平升高通过 METTL3 调控的 HIF1A/HMOX1 信号通路介导子宫内膜异位症中的铁死亡抵抗

阅读:6
作者:Liang Zongwen, Liu Jinming, Gou Yanling, Wang Honglin, Li Zhi, Cao Yingying, Zhang Huiyan, Bai Ruru, Zhang Zongfeng
Endometriosis (EMs) is a chronic gynecologic condition characterized by the growth of endometrial stromal and glandular tissue outside the uterine cavity of unknown etiology. Currently, ferroptosis resistance, increased glycolysis, and increased lactate production are identified in EMs. Histone lactylation is a lactate-derived posttranslational modification that is recognized primarily for its role in epigenetic regulation. In this study, it is demonstrated that increased histone lactylation contributes to ferroptosis resistance in ectopic endometrial stromal cells (EESCs). Mechanistically, histone lactylation mediates ferroptosis resistance through the hypoxia-inducible factor 1 alpha (HIF1A)/heme oxygenase 1 (HMOX1) signaling pathway, which is regulated by methyltransferase like 3 (METTL3). In vivo experiments reveal that combination therapy with 2-deoxy-D-glucose (2-DG) and erastin is more effective for the treatment of EMs. Together, the findings provide a theoretical basis for the pathogenesis of EMs and suggest that a combined treatment that inhibits histone lactylation and induces ferroptosis is an effective treatment for EMs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。