The carcinogenic potential of the environmental pollutant 1,4-dioxane (1,4-D) in humans is not yet fully understood or recognised. In this study, we provide evidence that 1,4-D acts as a carcinogen in human epithelial cells. Using the human bronchial epithelial cell line BEAS-2B, with or without CRISPR-Cas9-mediated Nrf2 knockout, we demonstrate that continuous exposure to environmentally relevant concentrations of 1.25-20Â ppm 1,4-D over 2 months induces malignant transformation in an Nrf2-dependent manner. Transformed cells exhibit enhanced anchorage-independent growth in soft agar, increased migration and invasion, and tumorigenic potential in a xenograft mouse model. Integrated RNA sequencing and proteomics analyses reveal that 1,4-D robustly activates Nrf2 signalling, driving extracellular vesicle (EV) biogenesis and cargo loading with syndecan 4 (SDC4) and other proteins, including COL12A1, CAPG and NNMT, which are associated with epithelial-mesenchymal transition (EMT) and cancer metastasis. Nrf2 knockout reduces SDC4 expression and its incorporation into EVs, leading to decreased EV uptake by recipient cells. Unlike EVs from 1,4-D-transformed WT cells, which enhance the proliferation, migration and invasion of recipient cells, EVs from 1,4-D-transformed Nrf2 KO cells exhibit a diminished capacity to promote these EMT properties. Furthermore, we demonstrate that the Nrf2 target gene SDC4, induced by 1,4-D and enriched in EVs, plays a critical role in EV uptake by recipient cells, thereby facilitating EMT propagation. Collectively, our findings suggest that 1,4-D is a human carcinogen, with its carcinogenicity largely dependent on Nrf2 activation, which orchestrates the biogenesis of EVs with EMT-promoting functions.
1,4-Dioxane Induces Epithelial-Mesenchymal Transition and Carcinogenesis in an Nrf2-Dependent Manner.
1,4-二恶烷以 Nrf2 依赖的方式诱导上皮-间质转化和癌变
阅读:12
作者:Wang Ziwei, Thakur Chitra, Bi Zhuoyue, Qiu Yiran, Zhang Wenxuan, Ji Haoyan, Venkatesan Arjun K, Cherukuri Sashank, Liu Ke Jian, Haley John D, Mao Xinwei, Meliker Jaymie, Chen Fei
| 期刊: | Journal of Extracellular Vesicles | 影响因子: | 14.500 |
| 时间: | 2025 | 起止号: | 2025 May;14(5):e70072 |
| doi: | 10.1002/jev2.70072 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
