The present study aimed to employ a diverse range of immunoinformatics and in vitro techniques to construct and validate a potentially active multiepitope subunit vaccine against SARS-CoV-2 using cytotoxic T-lymphocyte epitopes. To design the vaccine, a library of antigenic, nonallergic, and immunogenic epitopes of the spike protein was prepared. To improve the immunogenicity and safety of the final subunit vaccine, a sequence comprising three antigenic and nontoxic CTL epitopes was selected. To predict the tertiary structure of the vaccine, docking studies manipulating human major histocompatibility complex 1 (MHC-1) and Toll-like receptor-4 and Toll-like receptor-8 (TLR-4 and TLR-8) receptors were carried out. The consistency of the vaccine's binding to the selected receptors was confirmed by molecular dynamics (MD) simulations. In addition, the cloned vaccine was introduced into a bacterial culture, and its expression and antigenicity were assessed using SDS-PAGE and Western blotting, respectively. The vaccine design revealed a strong affinity for the TLR-8 and MHC-1 receptors, as evidenced by molecular docking analysis. The MD simulations conducted in specific systems yielded further data supporting the robust and enduring binding of TLR-8 and MHC-1 receptors to CTL epitopes. The bacterial cells harboring the vaccine sequence demonstrated robust production of the vaccine protein upon induction with IPTG. In addition, Western blotting demonstrated the antigenic properties of the vaccine protein. Computational and in vitro analyses suggested that the designed multiepitope subunit vaccine is stable and can induce specific immune responses against SARS-CoV-2.
Immunotherapeutic Approach for Improving the Efficacy of a Novel Subunit Vaccine Against SARS-CoV-2 by Cytotoxic T-Lymphocytes (CTL) Epitopes.
利用细胞毒性T淋巴细胞(CTL)表位提高新型亚单位疫苗对SARS-CoV-2的疗效的免疫治疗方法
阅读:6
作者:Javaid Momina, Sagheer Mahnoor, Saleem Muhammad Zafar, Hussain Nazim, Munawar Nayla
| 期刊: | Scientifica | 影响因子: | 3.100 |
| 时间: | 2025 | 起止号: | 2025 May 26; 2025:6025826 |
| doi: | 10.1155/sci5/6025826 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
