Bacterial contamination is an inevitable issue during the processing of semen preservation in pigs. As a prototypical endotoxin from Gram-negative bacteria in semen, lipopolysaccharide (LPS) undermines sperm function during liquid preservation. Spermine and spermidine could protect cells against LPS-induced injury, and the content of spermine and spermidine in seminal plasma is positively correlated with sperm quality. Thus, the present study aimed to clarify whether addition of spermine or spermidine is beneficial to porcine semen preservation and able to prevent LPS-induced sperm damage. The supplementation of spermine and spermidine in the diluent resulted in higher sperm motility, viability, acrosome integrity, and mitochondrial membrane potential (ÎΨm) after preservation in vitro at 17 °C for 7 d (Pâ <â 0.05). LPS-induced sperm quality deterioration, ÎΨm decline, cellular adenosine-triphosphate depletion, mitochondrial ultrastructure abnormality, mitochondrial permeability transition pore opening, phosphatidylserine (PS) translocation, and caspase-3 activation (Pâ <â 0.05). Interestingly, spermine and spermidine alleviated the LPS-induced changes of the aforementioned parameters and mitigated the decrease in the microtubule-associated protein light chain 3-II (LC3-II) to LC3-I ratio. Meanwhile, the α and β subunits of casein kinase 2 (CK2) were detected at the connecting piece and the tail. Significantly, addition of 4,5,6,7-tetrabromobenzotriazole, a specific CK2 inhibitor, counteracted the beneficial effects of spermine and spermidine on sperm quality, mitochondrial activity, and apoptosis. Together, these results suggest that spermine and spermidine improve sperm quality and the efficiency of liquid preservation of porcine semen. Furthermore, spermine and spermidine alleviate LPS-induced sperm mitochondrial dysfunction and apoptosis in a CK2-dependent manner.
Polyamines protect porcine sperm from lipopolysaccharide-induced mitochondrial dysfunction and apoptosis via casein kinase 2 activation.
多胺通过酪蛋白激酶 2 的激活来保护猪精子免受脂多糖诱导的线粒体功能障碍和细胞凋亡
阅读:6
作者:Li Rongnan, Wu Xiaodong, Cheng Jia, Zhu Zhendong, Guo Ming, Hou Guochao, Li Tianjiao, Zheng Yi, Ma Haidong, Lu Hongzhao, Chen Xiaoxu, Zhang Tao, Zeng Wenxian
| 期刊: | Journal of Animal Science | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 4; 103:skae383 |
| doi: | 10.1093/jas/skae383 | 种属: | Porcine |
| 研究方向: | 细胞生物学 | 信号通路: | Apoptosis |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
