Regulatable assembly of synthetic microtubule architectures using engineered MAP-IDR condensates.

利用工程化MAP-IDR凝聚体对合成微管结构进行可调控组装

阅读:7
作者:Chang Chih-Chia, Coyle Scott M
Microtubules filaments are assembled into higher-order structures and machines critical for cellular processes using microtubule-associated proteins (MAPs). However, the design of synthetic MAPs that direct the formation of new structures in cells is challenging, as nanoscale biochemical activities must be organized across micron length-scales. Here we develop synthetic MAP-IDR condensates (synMAPs) that provide tunable and regulatable assembly of higher-order microtubule structures in vitro and in mammalian cells. synMAPs harness a small microtubule-binding domain from oligodendrocytes (TPPP) whose activity can be synthetically rewired by interaction with condensate-forming IDR sequences. This combination allows synMAPs to self-organize multivalent structures that bind and bridge microtubules into synthetic architectures. Regulating the connection between the microtubule-binding and condensate-forming components allows synMAPs to act as nodes in more complex cytoskeletal circuits in which the formation and dynamics of the microtubule structure can be controlled by small molecules or cell-signaling inputs. By systematically testing a panel of synMAP circuit designs, we define a two-level control scheme for dynamic assembly of microtubule architectures at the nanoscale (via microtubule-binding) and microscale (via condensate formation). synMAPs provide a compact and rationally engineerable starting point for the design of more complex microtubule architectures and cellular machines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。