One fundamental yet open question is how eukaryotic chromosomes fold into segregated territories, a process essential for gene transcription and cell fate. Through analyzing Hi-C and chromatin-tracing DNA-FISH data, we identify long-range chromo skeleton loop structures that span over 100 Mb, extending beyond the reach of many existing DNA loop models. Further spatial density analyses point to assembly formation also independent of major nuclear structures. Some long-range loops share a subset of genomic loci, which serve as nucleation centers and drive loop clustering. These complexes are highly stable, as shown by live-cell imaging with sequence-specific fluorescent labeling, and biophysical model analyses reveal a multivalent binding mechanism. Our findings suggest a redundant, distributed cluster mechanism that ensures robustness across cell types and against mutations, guiding both chromosome compaction and the formation of smaller-scale chromosomal structures.
Long-range genomic loci stochastically assemble into combinatorial forms of chromosome skeleton.
长程基因组位点随机组装成染色体骨架的组合形式
阅读:6
作者:Zhang Jingyu, Wang Siyuan, Watkins Simon C, Xing Jianhua
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 May 9 |
| doi: | 10.1101/2025.02.10.637328 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
