Engineering of photo-inducible binary interaction tools for biomedical applications.

用于生物医学应用的光诱导二元相互作用工具的工程设计

阅读:6
作者:Lee Yi-Tsang, Guo Lei, Lan Tien-Hung, Nonomura Tatsuki, Liu Gan, Ma Guolin, Wang Rui, Huang Yun, Zhou Yubin
The ssrA-sspB dimerization system, derived from the bacterial degradation machinery, comprises a 7-residue ssrA peptide and its binding partner sspB. The compact size of ssrA makes it ideal for insertion into proteins of interest to manipulate host protein function by engineered light-responsive sspB. In contrast to the LOV2 caging strategy employed to develop optical dimerizers, we present herein two distinct photo-inducible binary interaction tools (PhoBITs) systems: PhoBIT1, a light-OFF switch generated by integrating LOV2 into sspB, and PhoBIT2, a light-ON switch building upon an evolved ssrA/CRY2-sspB pair with minimal basal interaction. These tools enable mechanistic dissection and optogenetic modulation of GPCRs, ion channels, necroptosis, and innate immune signaling. When incorporated into a monobody, PhoBIT2 allows photo-switchable inhibition of an oncogenic fusion protein to curtail leukemogenesis in vivo. Collectively, through targeted ssrA insertions, PhoBITs offer versatile control over diverse protein functions, thereby expanding possibilities for optogenetic engineering and potential therapeutic applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。