Effects of microplastic interaction with persistent organic pollutants on the activity of the aryl hydrocarbon and estrogen receptors.

微塑料与持久性有机污染物相互作用对芳烃受体和雌激素受体活性的影响

阅读:9
作者:Morgan Sarah E, DeLouise Lisa A
Environmental microplastics (MPs) are complex mixtures of plastic polymers and sorbed chemical pollutants with high degrees of heterogeneity, particularly in terms of particle size, morphology and degree of weathering. Currently, limitations exist in sampling sufficient amounts of environmental particles for laboratory studies to assess toxicity endpoints with statistical rigor and to examine chemical pollutant interactions. This study seeks to bridge this gap by investigating environmental plastic particle mimetics and pollutant-polymer interactions by mixing polymer particles with persistent organic pollutants (POPs) at set concentrations over time. Solutions containing combinations of polymers including polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET), and polyamide (PA) and POPs including 2,3,7,8 -Tetrachlorodibenzo-p-dioxin (TCDD), bisphenol A (BPA), and atrazine, were stirred for up to 19 weeks and monitored using assays to test for aryl hydrocarbon (AhR) and estrogen receptor (ER) activity which are cell signaling pathways impacted by environmental pollutants. TCDD induced AhR activity decreased over time in the presence of PS in a surface area dependent manner. BPA and atrazine also exhibited AhR antagonist activity in the presence of TCDD. The addition of BPA slowed the loss of activity but atrazine did not, suggesting that polymer chemistry impacts interactions with POPs. We also observed potential differences in TCDD sorption with different plastic polymers and that higher concentrations of PS particles may inhibit BPA-induced estrogen receptor activation. These results emphasize the need for additional understanding of how POPs and polymer chemistry impact their interaction and toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。