It is important to clarify the pharmacokinetics of mRNA-loaded lipid nanoparticles (mRNA-LNPs), which have attracted attention as new pharmaceutical modalities for vaccines and therapeutic agents against various diseases. Positron emission tomography (PET) is expected to provide data to ensure the pharmacokinetics of mRNA-LNPs early after administration in detail, especially because of its high temporal resolution. In this study, we have developed a method for the preparation of (64)Cu-labeled mRNA-LNPs by an approach via hybridization of short oligonucleotides to the 3' UTR region of mRNA, and conducted PET pharmacokinetic studies in normal and functionally deficient mice after intravenous and intramuscular administration, which mainly yielded the following findings. First, the common composition of mRNA-LNPs showed a clearly separated two-step accumulation process in the liver after intravenous administration in normal mice, indicating the involvement of ApoE in the second step. Second, after intravenous administration, the time to protein corona formation, in which blood proteins bind to mRNA-LNPs, was found to be within 5-10 min. Third, liver and spleen clearance was determined using integration plot analysis, and the contribution of hepatocyte uptake via ApoE to hepatic clearance after intravenous administration was approximately twice that of Kupffer cell uptake. Fourth, a comparison with luciferase reporter protein expression suggested that the protein expression ability of hepatocytes taken up via ApoE after intravenous administration and that of antigen-presenting cells transferred to the lymph nodes after intramuscular administration was remarkably high.
Positron Emission Tomography-Based Pharmacokinetics of mRNA-Lipid Nanoparticles: A Study Quantifying the ApoE and Macrophage Contribution.
基于正电子发射断层扫描的mRNA-脂质纳米颗粒药代动力学研究:量化ApoE和巨噬细胞贡献的研究
阅读:4
作者:Mohri Kohta, Miyazaki Takayuki, Warashina Shota, Takahashi Maiko, Ren Qin, Iida Riho, Wada Yasuhiro, Maeda Kazuya, Watanabe Yasuyoshi, Suzuki Yuta, Mukai Hidefumi
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2025 | 起止号: | 2025 Aug 13; 17(32):45625-45639 |
| doi: | 10.1021/acsami.5c14143 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
