TCF7L2 rs290487 C allele aberrantly enhances hepatic gluconeogenesis through allele-specific changes in transcription and chromatin binding

TCF7L2 rs290487 C 等位基因通过转录和染色质结合的等位基因特异性变化异常增强肝糖异生

阅读:7
作者:Xueyou Zhang, Panpan Ye, Haitao Huang, Baohong Wang, Fengqin Dong, Qi Ling

Abstract

In this study, we investigated the mechanisms underlying the altered hepatic glucose metabolism and enhanced diabetes risk in individuals with the TCF7L2 rs290487 C allele. Analysis of 195 cirrhotic patients revealed a higher insulin resistance index and incidence of hepatogenous diabetes in patients with the rs290487 C/C genotype compared to those with the C/T or T/T genotype. The in vitro experiments using targeted mutant PLC-PRF-5 cell line showed that cells with the rs290487 C/C genotype (C/C cells) had higher glucose production, lower glucose uptake, and lower TCF7L2 mRNA and protein levels than those with the C/T genotype (C/T cells). Integrated multi-omics analysis of ChIP-seq, ATAC-seq, RNA-seq, and metabolomics data showed genome-wide alterations in the DNA binding affinity of TCF7L2 in the C/C cells, including gain (e.g., PFKP and PPARGC1A) and loss (e.g., PGK1 and PGM1) of binding sites in several glucose metabolism-related genes. These allele-specific changes in transcriptional regulation lead to increased expression of gluconeogenesis-related genes (PCK1, G6PC and PPARGC1A) and their downstream metabolites (oxaloacetate and β-D-fructose 2,6-bisphosphate). These findings demonstrate that the TCF7L2 rs290487 C allele enhances gluconeogenesis through allele-specific changes in transcription and chromatin binding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。