A sequential scheme including PTT and 2'3'-cGAMP/CQ-LP reveals the antitumor immune function of PTT through the type I interferon pathway

PTT 和 2'3'-cGAMP/CQ-LP 的序贯方案揭示了 PTT 通过 I 型干扰素通路发挥的抗肿瘤免疫功能

阅读:9
作者:Xiaoshuang Song, Mao Wang, Simeng Liu, Huimin Liu, Ailing Jiang, Yu Zou, Yuchuan Deng, Qin Qin, Yiran Song, Yu Zheng

Abstract

Photothermal therapy (PTT) is a promising antitumor treatment that is easy to implement, minimally invasive, and precisely controllable, and evokes strong antitumor immunity. We believe that a thorough elucidation of its underlying antitumor immune mechanisms would contribute to the rational design of combination treatments with other antitumor strategies and consequently potentiate clinical use. In this study, PTT using indocyanine green (ICG) induced STING-dependent type I interferon (IFN) production in macrophages (RAW264.7 and bone marrow-derived macrophages (BMDMs)), as proven by the use of a STING inhibitor (C178), and triggered STING-independent type I IFN generation in tumor cells (CT26 and 4T1), which was inhibited by DNase pretreatment. A novel liposome coloaded with the STING agonist 2'3'-cGAMP (cGAMP) and chloroquine (CQ) was constructed to achieve synergistic effect with PTT, in which CQ increased cGAMP entrapment efficiency and prevented STING degradation after IFN signaling activation. The sequential combination treatment caused a significant increase in tumor cell apoptosis, probably due to interferon stimulating gene products 15 and 54 (ISG15 and ISG 54), and achieved a more striking antitumor inhibition effect in the CT26 tumor model than the 4T1 model, likely due to higher STAT1 expression and consequently more intense IFN signal transduction. In the tumor microenvironment, the combination treatment increased infiltrating CD8+T cells (4-fold) and M1-like TAMs (10-fold), and decreased M-MDSCs (over 2-fold) and M2-like TAMs (over 4-fold). Above all, in-depth exploration of the antitumor mechanism of PTT provides guidance for selecting sensitive tumor models and designing reasonable clinical schemes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。