BACKGROUND: Ductular reaction (DR), characterized by the expansion of biliary epithelial cells in the portal area, is a typical hepatic pathology for biliary atresia (BA). The cellular source and function of DR remain poorly understood. Herein, we performed single-cell RNA sequencing (scRNA-seq) in BA to resolve the complexity of DR in BA. METHODS: A total of 4 BA and 3 normal control livers underwent scRNA-seq. The epithelial cells were extracted from all cells for further analysis. The cell types, functions, and differentiational trajectory of epithelial cells were determined. The biliary markers and transcription factors (TFs) were identified by combing public bulk and scRNA-seq data and validated by immunohistochemistry. RESULTS: ScRNA-seq identified the existence of biliary reprogramming in BA, and the reprogrammed cells expressed both hepatocyte and cholangiocyte markers. When compared with hepatocytes, genes of epithelial-mesenchymal transition, fibrosis, inflammation, and RNA metabolism were enriched in cholangiocytes and upregulated in BA. Pseudotime analysis depicted a differentiation trajectory from hepatocytes across reprogrammed cells to cholangiocytes in BA. Matrix metalloproteinase 7 (MMP7), VTCN1, and LAMC2 were identified as the biliary markers, and KLF5 and HNF1B were determined as the biliary TFs in BA. All the biliary markers and TFs were upregulated in BA when compared with controls. CONCLUSIONS: Dissecting the cellular source and function of cholangiocytes is essential to understand the pathological role of DR in BA. The identified specific biliary markers and TFs provide important insights into its potential diagnosis and mechanism exploration for BA in the future.
Single-cell transcription reveals hepatocyte-to-cholangiocyte reprogramming and biliary gene profile in biliary atresia.
单细胞转录揭示了胆道闭锁中肝细胞向胆管细胞的重编程和胆道基因谱
阅读:6
作者:Meng Lingdu, Du Min, Li Haodong, Kong Fanyang, Yang Jiajian, Dong Rui, Zheng Shan, Chen Gong, Shen Zhen, Wang Junfeng
| 期刊: | Hepatology Communications | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 May 6; 9(5):e0710 |
| doi: | 10.1097/HC9.0000000000000710 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
