Acidosis regulates immune progression in rheumatoid arthritis by promoting the expression of cytokines and co-stimulatory molecules in synovial fibroblasts.

酸中毒通过促进滑膜成纤维细胞中细胞因子和共刺激分子的表达来调节类风湿性关节炎的免疫进展

阅读:13
作者:Qian Xuewen, Zai Zhuoyan, Tao Yuemin, Lv Huifang, Hao Mengjia, Zhang Longbiao, Zhang Xiaoyue, Xu Yayun, Zhang Yihao, Chen Feihu
BACKGROUND: Tissue acidosis is a key characteristic of RA. It remains unclear whether acidosis promotes the formation of the complex adaptive immune landscape mainly characterized by T cell activation in RA by influencing synovial fibroblasts. This study aims to investigate the influence of acidosis on the immune microenvironment of RA by exploring the cytokine secretion and expression of co-stimulatory factors of RA synovial fibroblasts. METHODS: The Bulk RNA-seq dataset (GSE89408, Normal = 23, RA = 150) was utilized for cytokine screening and the immune state assessment based on disease stage. RNA-seq was employed to investigate cytokine and co-stimulatory molecule expression following 6 h of acid stimulation, combined with Bulk RNA-seq data to evaluate contributions to RA. Human cytokine arrays were used to confirm cytokine accumulation in supernatants after 12 h of acid stimulation. Proteomics was applied to explore cellular functional states in RASFs under 6 h of acid stress, with joint RNA-seq analysis elucidating transcription factor activation. Validation of select high-throughput data was performed using qRT-PCR and immune-based assays. RESULTS: Bulk RNA-seq and RNA-seq identified 56 differentially expressed cytokines at their intersection. Functional enrichment analysis demonstrated that acid stimulation enhanced cytokine secretion and T cell chemotaxis in RA synovial fibroblasts (RASFs). Cytokine array revealed that acid exposure increased the accumulation of growth factors (e.g., FGF, VEGF) by over twofold and promoted the expression of multiple inflammatory and chemotactic factors. Immune state analysis indicated that acid stimulation induced a complex immune landscape by upregulating co-stimulatory and antigen-presenting molecules. Proteomics showed that acid stress enhanced mitochondrial function and triggered metabolic reprogramming in RASFs. Integrated transcriptomic and proteomic analyses revealed that AP1 regulates gene expression in RASFs, with its activation further confirmed by Western blotting and immunofluorescence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。