Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis.

鞘脂生物合成通量和脂蛋白运输的改变会导致反式脂肪诱发动脉粥样硬化

阅读:11
作者:Gengatharan Jivani M, Handzlik Michal K, Chih Zoya Y, Ruchhoeft Maureen L, Secrest Patrick, Ashley Ethan L, Green Courtney R, Wallace Martina, Gordts Philip L S M, Metallo Christian M
Dietary fat drives the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), particularly through circulating cholesterol and triglyceride-rich lipoprotein remnants. Industrially produced trans-unsaturated fatty acids (TFAs) incorporated into food supplies significantly promote ASCVD. However, the molecular trafficking of TFAs responsible for this association is not well understood. Here, we demonstrate that TFAs are preferentially incorporated into sphingolipids by serine palmitoyltransferase (SPT) and secreted from cells in vitro. Administering high-fat diets (HFDs) enriched in TFAs to Ldlr(-/-) mice accelerated hepatic very-low-density lipoprotein (VLDL) and sphingolipid secretion into circulation to promote atherogenesis compared with a cis-unsaturated fatty acid (CFA)-enriched HFD. SPT inhibition mitigated these phenotypes and reduced circulating atherogenic VLDL enriched in TFA-derived polyunsaturated sphingomyelin. Transcriptional analysis of human liver revealed distinct regulation of SPTLC2 versus SPTLC3 subunit expression, consistent with human genetic correlations in ASCVD, further establishing sphingolipid metabolism as a critical node mediating the progression of ASCVD in response to specific dietary fats.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。