Crosstalk between macrophages and mesenchymal stem cells shape patterns of osteogenesis and immunomodulation in mineralized collagen scaffolds.

巨噬细胞与间充质干细胞之间的相互作用塑造了矿化胶原支架中的成骨和免疫调节模式

阅读:6
作者:Kolliopoulos Vasiliki, Polanek Maxwell, Wong Yan Ling Melisande, Tiffany Aleczandria, Spiller Kara L, Harley Brendan A C
Mesenchymal stem cells (MSCs) are highly plastic, with the capacity to differentiate into a spectrum of tissue-specific stromal cells. In the field of bone regeneration, MSCs have largely been considered for their osteogenic differentiation capacity. MSCs are increasingly being appreciated for their immunomodulatory potential following exposure to pro-inflammatory stimuli (licensing). Pro-inflammatory environments arise following bone injury via activation of resident immune cells like macrophages. We describe the use of a mineralized collagen scaffold as a bone-mimetic in vitro model to study the influence of paracrine versus direct cell-to-cell contact of THP-1 macrophages on MSC osteogenic and immunomodulatory potential. Paracrine stimuli from macrophages enhance MSC osteogenic and immunomodulatory potential via upregulation of key transcriptomic markers as well as via soluble biomolecule production. Direct co-culture of MSCs and macrophages decreased immunomodulatory potential in MSCs, especially for licensed MSCs, but enhanced matrix remodeling and expression of genes related to macrophage chemotaxis. These data demonstrate the significant effect macrophage-derived paracrine factors and direct contact have on MSC activity in a biomaterial model of bone regeneration. This work illuminates a critical need to further understand these processes in more clinically relevant cell models to inform biomaterial design.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。