The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic nuclear receptors activated by various xenobiotics, drugs, hormones, and bile acids (BAs). Upon activation, these nuclear receptors play critical roles in regulating systemic energy homeostasis. However, precise mechanisms through which CAR and PXR influence systemic metabolism remain incompletely understood. Here, we investigated the impact of CAR and PXR on the liver-secreted hormone (i.e., hepatokine) expressions in response to BA stress, such as cholic acid (CA) feeding. Our analysis revealed that several BA-activated genes, including the well-known CAR/PXR target, aldo-keto reductase family 1, member B7 (Akr1b7), were commonly increased by CAR- and PXR-agonist treatments. Notably, we identified a gene cluster encoding new BA-regulated hepatokines, orosomucoids (ORMs), as direct transcriptional targets of CAR and PXR. The Orm1 and Orm2 expressions were completely abolished in the absence of both CAR and PXR following CA feeding. In addition, we found that Orm transcriptions are dynamically regulated under various metabolic conditions, proposing a potential contribution of CAR/PXR. In conclusion, our study demonstrated that BA stress activates CAR and PXR, which play a key role in regulating hepatokine expression, including ORMs. This suggests a potential link between hepatic BA signaling, CAR/PXR activity, and systemic metabolic effects.NEW & NOTEWORTHY Hepatic bile acid signaling plays a crucial role in coordinating systemic metabolism between the liver and other peripheral tissues. Our report demonstrates that, under bile acid-enriched conditions, activation of nuclear receptors CAR and PXR stimulate the expression of several putative hepatokines, including the orosomucoid gene family, which may exert regulatory effects in the liver and adipose tissue against metabolic disorders.
Bile acid regulation of xenobiotic nuclear receptors on the expressions of orosomucoids in the liver.
胆汁酸通过调节异生物质核受体来影响肝脏中α1-酸性糖蛋白的表达
阅读:6
作者:Suh Ji Ho, Cheon Inyoung, Jung Hyun-Jung, Lee Sung Ho, Heo Mi Jeong, DeBerge Matthew, Wooton-Kee Clavia Ruth, Kim Kang Ho
| 期刊: | American Journal of Physiology-Endocrinology and Metabolism | 影响因子: | 3.100 |
| 时间: | 2025 | 起止号: | 2025 Jun 1; 328(6):E940-E951 |
| doi: | 10.1152/ajpendo.00417.2024 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
