SETD2 drives METTL14-mediated m(6)A to suppress Piezo1 Attenuation and activate TGM2 to promote pulmonary hypertension.

SETD2 驱动 METTL14 介导的 m(6)A 抑制 Piezo1 衰减并激活 TGM2 以促进肺动脉高压

阅读:7
作者:Zhao Shuai-Shuai, Yuan Chuan, Liu Jin-Long, Wu Qi-Cai, Zhou Xue-Liang
BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by pathological vascular remodeling driven by pulmonary artery smooth muscle cell (PASMC) proliferation. While METTL14-mediated N6-methyladenosine (m(6)A) RNA modification has been implicated in PAH, the upstream regulators and downstream effectors linking m(6)A to PASMC dysregulation remain unclear. This study investigates the role of SETD2, a histone methyltransferase, in driving METTL14-dependent m(6)A modifications to promote PAH via Piezo1 and transglutaminase 2 (TGM2). METHODS: C57BL/6 mice were subjected to hypoxia, and pulmonary artery smooth muscle cells (PASMCs) were periodically stretched to establish PAH models in vivo and in vitro. The epigenetic regulation of METTL14 by SETD2-mediated H3K36me3 was investigated by chromatin immunoprecipitation (ChIP). Methylated RNA immunoprecipitation sequence (MeRIP-seq), RNA-seq, and dual-luciferase reporter gene data were used to determine whether METTL14 enhances the expression of Piezo1 in an m(6)A-dependent manner. To analyze comparisons between multiple datasets, one-way ANOVA was used. RESULTS: METTL14 overexpression increased PASMC proliferation by 1.45-fold (vs. controls) and elevated global m(6)A levels by 1.73-fold in total RNA and 1.43-fold in poly A + RNA. SETD2-driven H3K36me3 histone modification upregulated METTL14 expression by 1.76-fold, amplifying m(6)A deposition. In hypoxia-induced PAH mice, METTL14 overexpression exacerbated hemodynamic severity, increasing right ventricular systolic pressure (RVSP) by 29% and mean pulmonary arterial pressure (mPAP) by 33% (vs. hypoxia alone). SETD2 knockout in PASMCs reduced RVSP by 24%, mPAP by 28%, and pulmonary artery media thickness (PAMT) by 29%, while decreasing m(6)A levels by 48%. Piezo1 mRNA stability increased by 2.36-fold via METTL14-mediated m(6)A modification at adenosine 1080, elevating Piezo1 protein expression by 3.58-fold in PASMCs. Piezo1 overexpression increased intracellular Ca²⁺ influx, driving TGM2 activity by 1.79-fold and restoring PASMC proliferation despite SETD2 deficiency. CONCLUSIONS: This study identifies a novel SETD2/H3K36me3/METTL14/m(6)A axis that stabilizes Piezo1 mRNA, promoting Ca²⁺-dependent TGM2 activation and PASMC proliferation in PAH. Targeting this pathway-via SETD2, METTL14, or Piezo1 inhibition-may offer therapeutic potential to ameliorate vascular remodeling in PAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。