Mathematical modeling suggests 14-3-3 proteins modulate RAF paradoxical activation.

数学模型表明 14-3-3 蛋白调节 RAF 的矛盾激活

阅读:5
作者:Mendiratta Gaurav, Abbott Kodye, Li Yao-Cheng, Yu Jingting, Carlip Peter, Tong Melinda, Huang Jianfeng, Shokhirev Maxim N, McFall Thomas, Wahl Geoffrey M, Stites Edward C
RAF inhibitor "paradoxical activation" (PA) is a phenomenon where RAF kinase inhibitors increase RAF kinase signaling. Through mathematical modeling and experimental data analysis, we recently demonstrated that the combination of conformational autoinhibition (CA) with the disruption of CA by RAF inhibitors plays an important role in PA. 14-3-3 proteins are known to modulate RAF CA and RAF dimerization. We here extend our mathematical model to include both roles of 14-3-3 proteins, and we derive rigorous analytical expressions of RAF signal regulation as modulated by 14-3-3 proteins. We then use the model to investigate how 14-3-3 proteins may modulate PA. We mathematically show 14-3-3 protein stabilization of the autoinhibited form of RAF should potentiate PA, while 14-3-3 protein stabilization of the active RAF dimer should reduce PA. Our analysis suggests that the net-effect will often be a potentiation of PA, and that 14-3-3 proteins may be capable of inducing PA for RAF inhibitors that normally show little to no PA. We test model-based insights experimentally with two different approaches: forced increases in 14-3-3 expression (which we find amplifies PA) and evolved resistance assays (which suggest increased 14-3-3 expression may contribute to resistance to RAF inhibitors). Overall, this work supports a role for 14-3-3 in modulating RAF-inhibitor mediated paradoxical activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。