Leukotriene B4 enhances innate immune defense against the puerperal sepsis agent Streptococcus pyogenes.

白三烯B4增强了机体对产褥期败血症病原体化脓性链球菌的先天免疫防御能力

阅读:4
作者:Soares Elyara M, Mason Katie L, Rogers Lisa M, Serezani Carlos H, Faccioli Lucia H, Aronoff David M
Puerperal sepsis is a leading cause of maternal mortality worldwide. Streptococcus pyogenes [group A Streptococcus; (GAS)] is a major etiologic agent of severe postpartum sepsis, yet little is known regarding the pathogenesis of these infections. Tissue macrophages provide innate defense against GAS, and their actions are highly regulated. The intracellular second messenger cAMP can negatively regulate macrophage actions against GAS. Because leukotriene (LT) B(4) has been shown to suppress intracellular cAMP in macrophages, we hypothesized that it could enhance innate defenses against GAS. We assessed the capacity of LTB(4) to modulate antistreptococcal actions of human macrophages, including placental and decidual macrophages and used a novel intrauterine infection model of GAS in mice lacking the 5-lipoxygenase enzyme to determine the role of endogenous LTs in host defense against this pathogen. Animals lacking 5-lipoxygenase were significantly more vulnerable to intrauterine GAS infection than were wild-type mice and showed enhanced dissemination of bacteria out of the uterus and a more robust inflammatory response than did wild-type mice. In addition, LTB(4) reduced intracellular cAMP levels via the BLT1 receptor and was a potent stimulant of macrophage phagocytosis and NADPH oxidase-dependent intracellular killing of GAS. Importantly, interference was observed between the macrophage immunomodulatory actions of LTB(4) and the cAMP-inducing lipid PGE(2), suggesting that interplay between pro- and anti-inflammatory compounds may be important in vivo. This work underscores the potential for pharmacological targeting of lipid mediator signaling cascades in the treatment of invasive GAS infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。