Autoimmunity ensues upon breakdown of tolerance mechanism and priming of self-reactive T cells. Plasmacytoid dendritic cells (pDCs) constitute a unique cell subset that participates in the activation of autoreactive T cells but also has been shown to be critically involved in the induction of self-tolerance. However, their functional importance during the priming phase of an organ-specific autoimmune response remains unclear. In this study, we demonstrate that absence of pDCs during myelin antigenic challenge resulted in amelioration of experimental autoimmune encephalomyelitis and reduced disease severity. This was accompanied by significantly decreased frequency of myelin-specific T cells in the draining lymph nodes and inhibition of Th1 and Th17 immune responses. Unexpectedly, in vivo ablation of pDCs increased myelopoiesis in the bone marrow and specifically induced the generation of CD11b(hi)Gr1(+) myeloid-derived suppressor cells (MDSCs). Furthermore, we demonstrate that pDC depletion enhanced the mobilization of MDSCs in the spleen, and that sorted MDSCs could potently suppress CD4(+) T cell responses in vitro. Importantly, pDC-depleted mice showed increased levels of MCP-1 in the draining lymph nodes, and in vivo administration of MCP-1 increased the frequency and absolute numbers of MDSCs in the periphery of treated mice. Together, our results reveal that absence of pDCs during the priming of an autoimmune response leads to increased mobilization of MDSCs in the periphery in an MCP-1-dependent manner and subsequent amelioration of autoimmunity.
In vivo ablation of plasmacytoid dendritic cells inhibits autoimmunity through expansion of myeloid-derived suppressor cells.
体内浆细胞样树突状细胞的消融可通过髓系来源抑制细胞的扩增来抑制自身免疫
阅读:4
作者:Ioannou Marianna, Alissafi Themis, Boon Louis, Boumpas Dimitrios, Verginis Panayotis
| 期刊: | Journal of Immunology | 影响因子: | 3.400 |
| 时间: | 2013 | 起止号: | 2013 Mar 15; 190(6):2631-40 |
| doi: | 10.4049/jimmunol.1201897 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
