Microglia and a functional type I IFN pathway are required to counter HSV-1-driven brain lateral ventricle enlargement and encephalitis.

小胶质细胞和功能性 I 型 IFN 通路是抵抗 HSV-1 引起的脑侧脑室扩大和脑炎所必需的

阅读:6
作者:Conrady Christopher D, Zheng Min, van Rooijen Nico, Drevets Douglas A, Royer Derek, Alleman Anthony, Carr Daniel J J
HSV-1 is the leading cause of sporadic viral encephalitis, with mortality rates approaching 30% despite treatment with the antiviral drug of choice, acyclovir. Permanent neurologic deficits are common in patients that survive, but the mechanism leading to this pathology is poorly understood, impeding clinical advancements in treatment to reduce CNS morbidity. Using magnetic resonance imaging and type I IFN receptor-deficient mouse chimeras, we demonstrate HSV-1 gains access to the murine brain stem and subsequently brain ependymal cells, leading to enlargement of the cerebral lateral ventricle and infection of the brain parenchyma. A similar enlargement in the lateral ventricles is found in a subpopulation of herpes simplex encephalitic patients. Associated with encephalitis is an increase in CXCL1 and CXCL10 levels in the cerebral spinal fluid, TNF-α expression in the ependymal region, and the influx of neutrophils of encephalitic mouse brains. Reduction in lateral ventricle enlargement using anti-secretory factor peptide 16 reduces mortality significantly in HSV-1-infected mice without any effect on expression of inflammatory mediators, infiltration of leukocytes, or changes in viral titer. Microglial cells but not infiltrating leukocytes or other resident glial cells or neurons are the principal source of resistance in the CNS during the first 5 d postinfection through a Toll/IL-1R domain-containing adapter inducing IFN-β-dependent, type I IFN pathway. Our results implicate lateral ventricle enlargement as a major cause of mortality in mice and speculate such an event transpires in a subpopulation of human HSV encephalitic patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。