Effective host defense requires a robust, yet self-limited response to pathogens. A poorly calibrated response can lead to either bacterial dissemination due to insufficient inflammation or organ injury due to excessive inflammation. Recent evidence suggests that the cholinergic anti-inflammatory reflex helps calibrate the immune response. However, the influence of peripheral noradrenergic neurons, which are primarily sympathetic neurons, in regulating immunity remains incompletely characterized. Using a model of 6-hydroxydopamine-mediated noradrenergic nerve ablation, we show that elimination of noradrenergic neurons improves survival during Klebsiella pneumoniae peritonitis (67 versus 23%, p < 0.005) in mice. The survival benefit results from enhanced MCP-1-dependent monocyte recruitment and a subsequent decrease in bacterial loads. Splenectomy eliminated both the survival benefit of 6-hydroxydopamine and monocyte recruitment, suggesting that monocytes recruited to the peritoneum originate in the spleen. These results suggest that noradrenergic neurons regulate the immune response through two pathways. First, sympathetic nerve-derived norepinephrine directly restrains MCP-1 production by peritoneal macrophages during infection. Second, norepinephrine derived from the vagally innervated splenic nerve regulates splenic monocyte egress. Removal of these two modulators of the immune response enhances antibacterial immunity and improves survival. These results may have implications for how states of catecholamine excess influence the host response to bacterial infections.
Noradrenergic neurons regulate monocyte trafficking and mortality during gram-negative peritonitis in mice.
去甲肾上腺素能神经元调节小鼠革兰氏阴性菌腹膜炎期间的单核细胞迁移和死亡率
阅读:5
作者:Seeley Eric J, Barry Sophia S, Narala Saisindhu, Matthay Michael A, Wolters Paul J
| 期刊: | Journal of Immunology | 影响因子: | 3.400 |
| 时间: | 2013 | 起止号: | 2013 May 1; 190(9):4717-24 |
| doi: | 10.4049/jimmunol.1300027 | 研究方向: | 神经科学、细胞生物学 |
| 疾病类型: | 肾炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
