Intracellular bacteria of the genus Chlamydia cause numerous typically chronic diseases, frequently with debilitating sequelae. Genetic determinants of disease susceptibility after infection with Chlamydia bacteria are unknown. C57BL/6 mice develop severe pneumonia and poor immunity against Chlamydia after moderate respiratory infection whereas BALB/c mice are protected from disease and develop vigorous Th1 immunity. Here we show that infected C57BL/6 macrophages release more NO synthesized by NO synthase 2 (NOS2) than BALB/c macrophages and have lower mRNA concentrations of arginase II, a competitor of NOS2 for the common substrate, l-arginine. Reduction, but not elimination, of NO production by incomplete inhibition of NOS2 abolishes susceptibility of C57BL/6 mice to Chlamydia-induced disease. Thus, the quantity of NO released by infected macrophages is the effector mechanism that regulates between pathogenic and protective responses to chlamydial infection, and genes controlling NO production determine susceptibility to chlamydial disease.
The quantity of nitric oxide released by macrophages regulates Chlamydia-induced disease.
巨噬细胞释放的一氧化氮量调节衣原体引起的疾病
阅读:10
作者:Huang Jin, DeGraves Fred J, Lenz Stephen D, Gao Dongya, Feng Pu, Li Dan, Schlapp Tobias, Kaltenboeck Bernhard
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2002 | 起止号: | 2002 Mar 19; 99(6):3914-9 |
| doi: | 10.1073/pnas.062578399 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
