Selenium deficiency impedes maturation of parvalbumin interneurons, perineuronal nets, and neural network activity.

硒缺乏会阻碍小白蛋白中间神经元、神经元周围网状结构和神经网络活动的成熟

阅读:7
作者:Sasuclark Alexandru R, Watanabe Marissa, Roshto Kai, Kilonzo Victor W, Zhang Yiqiang, Pitts Matthew W
Selenoproteins are fundamental players in redox signaling that are essential for proper brain development and function. They are indispensable for the vitality of GABAergic parvalbumin-expressing interneurons (PVIs), a cell type characterized by fast-spiking activity and heightened rates of metabolism. During development, PVIs are preferentially encapsulated by specialized extracellular matrix structures, termed perineuronal nets (PNNs), which serve to stabilize synaptic structure and act as protective barriers against redox insults. Consequently, alterations in PVIs and PNNs are well chronicled in neuropsychiatric disease, and evidence from animal models indicates that redox imbalance during adolescence impedes their maturation. Herein, we examined the influence of selenium on maturation of neural network structure and activity in primary cortical cultures. Cultures grown in selenium-deficient media exhibited reduced antioxidant activity, impaired PNN formation, and decreased synaptic input onto PVIs at 28 days in vitro, which coincided with increased oxidative stress. Parallel studies to monitor longitudinal maturation of in vitro electrophysiological activity were conducted using microelectrode arrays (MEA). Selenium content affected the electrophysiological profile of developing cultures, as selenium-deficient cultures exhibited impairments in long-term potentiation in conjunction with reduced spike counts for both network bursts and in response to stimulation. Finally, similar PNN deficits were observed in the cortex of mice raised on a selenium-deficient diet, providing corroborative evidence for the importance of selenium in PNN development. In sum, these findings show the vital role of selenium for the development of GABAergic inhibitory circuits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。