Distinct Adipose Depots from Mice Differentially Respond to a High-Fat, High-Salt Diet.

小鼠的不同脂肪组织对高脂高盐饮食的反应不同

阅读:9
作者:DeClercq Vanessa C, Goldsby Jennifer S, McMurray David N, Chapkin Robert S
BACKGROUND: Dietary factors such as high-sodium or high-fat (HF) diets have been shown to induce a proinflammatory phenotype. However, there is limited information with respect to how microenvironments of distinct intra-abdominal adipose depots respond to the combination of a high-salt, HF diet. OBJECTIVE: We tested the hypothesis that HF feeding would cause changes in distinct adipose depots, which would be further amplified by the addition of high salt to the diet. METHODS: Twenty-seven male C57BL6 mice were fed an HF diet (60% of kcal from fat), an HF + high-salt diet (4% wt:wt), a control diet [low-fat (LF);10% of kcal from fat], or an LF + high-salt diet for 12 wk. The main sources of fat in the diets were corn oil and lard. Adipokines in serum and released from adipose tissue organ cultures were measured by immunoassays. QIAGEN's Ingenuity Pathway Analysis was used to perform functional analysis of the RNA-sequencing data from distinct adipose depots. RESULTS: Diet-induced obesity resulted in a classical inflammatory phenotype characterized by increased concentrations of circulating inflammatory mediators (38-56%) and reduced adiponectin concentrations (27%). However, high-salt feeding did not exacerbate the HF diet-induced changes in adipokines and cytokines. Leptin and interleukin-6 were differentially released from adipose depots and HF feeding impaired adiponectin and resistin secretion across all 3 depots (34-48% and 45-83%, respectively). The addition of high salt to the HF diet did not further modulate secretion in cultured adipose tissue experiments. Although gene expression data from RNA sequencing indicated a >4.3-fold upregulation of integrin αX (Itgax) with HF feeding in all 3 depots, markers of cellular function were differentially expressed in response to diet across depots. CONCLUSION: Collectively, these findings highlight the role of distinct adipose depots in mice in the development of obesity and emphasize the importance of selecting specific depots to study the effects of therapeutic interventions on adipose tissue function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。