Hearing restoration by gene replacement therapy for a multisite-expressed gene in a mouse model of human DFNB111 deafness.

在人类 DFNB111 耳聋的小鼠模型中,通过基因替代疗法恢复多位点表达基因的听力

阅读:5
作者:Jiang Luoying, Hu Shao Wei, Wang Zijing, Zhou Yi, Tang Honghai, Chen Yuxin, Wang Daqi, Fan Xintai, Han Lei, Li Huawei, Shi Dazhi, He Yingzi, Shu Yilai
Gene therapy has made significant progress in the treatment of hereditary hearing loss. However, most research has focused on deafness-related genes that are primarily expressed in hair cells with less attention given to multisite-expressed deafness genes. MPZL2, the second leading cause of mild-to-moderate hereditary deafness, is widely expressed in different inner ear cells. We generated a mouse model with a deletion in the Mpzl2 gene, which displayed moderate and slowly progressive hearing loss, mimicking the phenotype of individuals with DFNB111. We developed a gene replacement therapy system mediated by AAV-ie for efficient transduction in various types of cochlear cells. AAV-ie-Mpzl2 administration significantly lowered the auditory brainstem response and distortion product otoacoustic emission thresholds of Mpzl2(-/-) mice for at least seven months. AAV-ie-Mpzl2 delivery restored the structural integrity in both outer hair cells and Deiters cells. This study suggests the potential of gene therapy for MPZL2-related deafness and provides a proof of concept for gene therapy targeting other deafness-related genes that are expressed in different cell populations in the cochlea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。