In response to a variety of extracellular ligands, nuclear factor-kappaB (NF-kappaB) signaling regulates inflammation, cell proliferation, and apoptosis. It is likely that cells are not continuously exposed to stimulating ligands in vivo but rather experience transient pulses. To study the temporal regulation of NF-kappaB and its major regulator, inhibitor of NF-kappaBalpha (IkappaBalpha), in real time, we utilized a novel transcriptionally coupled IkappaBalpha-firefly luciferase fusion reporter and characterized the dynamics and responsiveness of IkappaBalpha processing upon a short 30-s pulse of tumor necrosis factor alpha (TNFalpha) or a continuous challenge of TNFalpha following a 30-s preconditioning pulse. Strikingly, a 30-s pulse of TNFalpha robustly activated inhibitor of NF-kappaB kinase (IKK), leading to IkappaBalpha degradation, NF-kappaB nuclear translocation, and strong transcriptional up-regulation of IkappaBalpha. Furthermore, we identified a transient refractory period (lasting up to 120 min) following preconditioning, during which the cells were not able to fully degrade IkappaBalpha upon a second TNFalpha challenge. Kinase assays of IKK activity revealed that regulation of IKK activity correlated in part with this transient refractory period. In contrast, experiments involving sequential exposure to TNFalpha and interleukin-1beta indicated that receptor dynamics could not explain this phenomenon. Utilizing a well accepted computational model of NF-kappaB dynamics, we further identified an additional layer of regulation, downstream of IKK, that may govern the temporal capacity of cells to respond to a second proinflammatory insult. Overall, the data suggested that nuclear export of NF-kappaB.IkappaBalpha complexes represented another rate-limiting step that may impact this refractory period, thereby providing an additional regulatory mechanism.
Identification of a ligand-induced transient refractory period in nuclear factor-kappaB signaling.
鉴定核因子-κB信号传导中配体诱导的瞬时不应期
阅读:4
作者:Moss Britney L, Gross Shimon, Gammon Seth T, Vinjamoori Anant, Piwnica-Worms David
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2008 | 起止号: | 2008 Mar 28; 283(13):8687-98 |
| doi: | 10.1074/jbc.M706831200 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
