Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus.

系统性红斑狼疮患者的线粒体超极化和 ATP 耗竭

阅读:6
作者:Gergely Peter Jr, Grossman Craig, Niland Brian, Puskas Ferenc, Neupane Hom, Allam Fatme, Banki Katalin, Phillips Paul E, Perl Andras
OBJECTIVE: Peripheral blood lymphocytes (PBLs) from systemic lupus erythematosus (SLE) patients exhibit increased spontaneous and diminished activation-induced apoptosis. We tested the hypothesis that key biochemical checkpoints, the mitochondrial transmembrane potential (deltapsim) and production of reactive oxygen intermediates (ROIs), mediate the imbalance of apoptosis in SLE. METHODS: We assessed the deltapsim with potentiometric dyes, measured ROI production with oxidation-sensitive fluorochromes, and monitored cell death by annexin V and propidium iodide staining of lymphocytes, using flow cytometry. Intracellular glutathione levels were measured by high-performance liquid chromatography, while ATP and ADP levels were assessed by the luciferin-luciferase assay. RESULTS: Both deltapsim and ROI production were elevated in the 25 SLE patients compared with the 25 healthy subjects and the 10 rheumatoid arthritis patients. Intracellular glutathione contents were diminished, suggesting increased utilization of reducing equivalents in SLE. H2O2, a precursor of ROIs, increased deltapsim and caused apoptosis in normal PBLs. In contrast, H2O2-induced apoptosis and deltapsim elevation were diminished, particularly in T cells, and the rate of necrotic cell death was increased in patients with SLE. The intracellular ATP content and the ATP:ADP ratio were reduced and correlated with the deltapsim elevation in lupus. CD3:CD28 costimulation led to transient elevation of the deltapsim, followed by ATP depletion, and sensitization of normal PBLs to H2O2-induced necrosis. Depletion of ATP by oligomycin, an inhibitor of F0F1-ATPase, had similar effects. CONCLUSION: T cell activation and apoptosis are mediated by deltapsim elevation and increased ROI production. Mitochondrial hyperpolarization and the resultant ATP depletion sensitize T cells for necrosis, which may significantly contribute to inflammation in patients with SLE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。