Peroxiredoxin-2 recycling is inhibited during erythrocyte storage

红细胞储存期间过氧化物酶-2 循环受到抑制

阅读:6
作者:Victoria M Harper, Joo Yeun Oh, Ryan Stapley, Marisa B Marques, Landon Wilson, Stephen Barnes, Chiao-Wang Sun, Tim Townes, Rakesh P Patel

Aims

Transfusion with stored red blood cells (RBCs) is associated with increased morbidity and mortality. Peroxiredoxin-2 (Prx-2) is a primary RBC antioxidant that limits hydrogen peroxide (H2O2)-mediated toxicity. Whether Prx-2 activity is altered during RBC storage is not known.

Conclusion

These data highlight the potential for slower Prx-2 recycling and β93Cys oxidation in modulating storage-dependent damage of RBCs and in mediating post-transfusion toxicity.

Results

Basal and H2O2-induced Prx-2 activity was measured in RBCs (stored for 7-35 days). Basal Prx-2 thiol oxidation increased with RBC age, whereas H2O2-dependent formation of dimeric Prx-2 was similar. However, reduction of Prx-2 dimers to monomers became progressively slower with RBC storage, which was associated with increased H2O2-induced hemolysis. Surprisingly, no change in the NADPH-dependent thioredoxin (Trx)/Trx-reductase system, which recycles dimeric Prx-2, was observed in stored RBCs. Using mouse RBCs expressing human wild type (β93Cys) or hemoglobin (Hb) in which the conserved β93Cys residue is replaced by Ala (β93Ala), a role for this thiol in modulating Prx-2 reduction was demonstrated. Specifically, Prx-2 recycling was blunted in β93Ala RBC, which was reversed by carbon monoxide-treatment, suggesting that heme autoxidation-derived H2O2 maintains Prx-2 in the oxidized form in these cells. Moreover, assessment of the oxidative state of the β93Cys in RBCs during storage showed that while it remained reduced on intraerythrocytic Hb in stored RBC, it was oxidized to dehydroalanine on hemolyzed or extracellular Hb. Innovation: A novel mechanism for regulated Prx-2 activity in RBC via the β93Cys residue is suggested.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。