Codonopsis pilosula polysaccharide attenuates Aβ toxicity and cognitive defects in APP/PS1 mice

党参多糖减轻 APP/PS1 小鼠的 Aβ 毒性和认知缺陷

阅读:5
作者:Lu Wan, Qing Zhang, Hongbin Luo, Zhendong Xu, Sheng Huang, Fumin Yang, Yi Liu, Yacoubou Abdoul Razak Mahaman, Dan Ke, Qun Wang, Rong Liu, Jian-Zhi Wang, Xiji Shu, Xiaochuan Wang

Abstract

Codonopsis pilosula Polysaccharides (CPPs), a traditional Chinese medicine used for thousands of years, is a potential neuroprotective polysaccharide via a relatively poorly understood mechanism. We previously reported that CPPs attenuated tau pathology in hTau transfected mice and therefore in the current work investigated the effect of CPPs on Aβ toxicity and cognitive defects in APP/PS1 mice model. It was found that one-month intragastric administration of CPPs significantly ameliorated cognitive defects in APP/PS1 mice. In addition, CPPs treatment mitigated the loss of the synaptic plasticity and increased the synaptic proteins including synaptotagmin and PSD95. The expression of Aβ42 and Aβ40 was remarkably decreased in the hippocampus of APP/PS1 mice after CPPs treatment. We also found that CPPs coincubation significantly reduced the amount of APPβ and Aβ42 expression in cells. Intriguingly, the activity of BACE1 was decreased following CPPs treatment in both the hippocampus of APP/PS1 mice and in vitro experiments. Collectively, these results indicated that CPPs attenuated Aβ pathology in APP/PS1 mice, and down-regulating BACE1 might be the underlaying mechanism which could be a therapeutic target for alleviating cognitive defects in AD pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。