Defective Allele of the Neuronal Nitric Oxide Synthase Gene Increases Insulin Resistance During Acute Phase of Myocardial Infarction.

神经元一氧化氮合酶基因的缺陷等位基因会增加心肌梗死急性期的胰岛素抵抗

阅读:6
作者:Nóbrega Otávio T, Campos-Staffico Alessandra M, Oliveira Elayne Kelen, Munhoz Daniel B, Moura Filipe A, Carvalho Luis Sérgio F, Soares Alexandre Anderson S M, Gomes Ciro M, Tonet-Furioso Audrey C, Sposito Andrei C
BACKGROUND: Glycemic disorders are strong predictors of mortality in ST-elevation myocardial infarction (STEMI) patients, and disruption in nitric oxide (NO) production is associated with insulin-resistant states. We evaluated whether a defective allele of the neuronal nitric oxide synthase (nNOS) gene (NOS1) might influence insulin response and blood-glucose balance during the acute phase of STEMI and if post-infarction total plasma-NO levels and vasodilation scores varied across nNOS genotypes. METHODS: Consecutive patients with STEMI (n=354) underwent clinical evaluations and genotyping for the promoter variation rs41279104. In-hospital clinical and blood evaluations were performed at admission and five days after STEMI, with glycemic, insulinemic, and disposition indices assessed at the same times. Flow-mediated dilation (FMD) was assessed by reactive hyperemia on the 30th day. RESULTS: Homozygotes for the defective allele (A) showed lower glycemia and insulin sensitivity on day 1 while showing the highest β-cell function and no changes in the circulating NO pool, which is compatible with hyperresponsive β cells counteracting the inherent glucose-resistant state of AA patients. At day 5, glycemic scores had shifted to indicate greater insulin sensitivity among A homozygotes, paralleled by a significant yet poor increase in NO bioavailability compared to that among G carriers. All in all, defective homozygotes showed greater insulin resistance at admission that had reversed by 5 days after STEMI. Even so, A carriers developed lower FMD scores compared to G homozygotes after the acute phase. CONCLUSION: A defective nNOS allele (and due decline in NO production) seemed to elicit a hyperinsulinemia response to compensate for an insulin-resistant state during the acute phase of STEMI and to be associated with poor endothelial function after the acute phase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。