SMC1A expression and mechanism of pathogenicity in probands with X-Linked Cornelia de Lange syndrome

X连锁Cornelia de Lange综合征患儿SMC1A的表达及致病机制

阅读:8
作者:Jinglan Liu, Rachel Feldman, Zhe Zhang, Matthew A Deardorff, Eden V Haverfield, Maninder Kaur, Jennifer R Li, Dinah Clark, Antonie D Kline, Darrel J Waggoner, Soma Das, Laird G Jackson, Ian D Krantz

Abstract

Cornelia de Lange Syndrome (CdLS) is a dominantly inherited heterogeneous genetic disorder with multisystem abnormalities. Sixty percent of probands with CdLS have heterozygous mutations in the Nipped-B-like (NIPBL) gene, 5% have mutations in the SMC1A gene, and one proband was found to have a mutation in the SMC3 gene. Cohesin is a multisubunit complex consisting of a SMC1A and SMC3 heterodimer and two non-SMC subunits. SMC1A is located on the human X chromosome and is reported to escape X inactivation. Twenty-nine unrelated CdLS probands with 21 unique SMC1A mutations have been identified including seven males. All mutations identified to date are either missense or small deletions, with all presumably preserving the protein open reading frame. Both wild-type and mutant alleles are expressed. Females quantitatively express twice the amount of SMC1A mRNA compared to males. The transcriptional profiling of 23 selected genes is different in SMC1A mutant probands, controls, and NIPBL mutant probands. These results suggest that mechanistically SMC1A-related CdLS is not due to altered levels of the SMC1A transcript, but rather that the mutant proteins maintain a residual function in males and enact a dominant negative effect in females.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。