There is increasing indication that interspecific phenotypic differences result from variations in gene-regulatory interactions. Here we provide evidence that mice differ from zebrafish in the way they use homologous key components to regulate pigment cell differentiation. In both zebrafish and mice, one transcription factor, SOX10, controls the expression of another, MITF (microphthalmia-associated transcription factor), which in turn regulates a set of genes critical for pigment cell development and pigmentation. Mutations in either Sox10 or Mitf impair pigment cell development. In Sox10-mutant zebrafish, experimentally induced expression of Mitf fully rescues pigmentation. Using lineage-directed gene transfer, we show that, in the mouse, Mitf can rescue Sox10-mutant precursor cells only partially. In fact, retrovirally mediated, Sox10-independent Mitf expression in mouse melanoblasts leads to cell survival and expression of a number of pigment biosynthetic genes but does not lead to expression of tyrosinase, the rate-limiting pigment gene which critically depends on both Sox10 and Mitf. Hence, compared with fish, mice have evolved a regulation of tyrosinase expression that includes feed-forward loops between Sox10 and tyrosinase regulatory regions. The results may help to explain how some embryos, such as zebrafish, can achieve rapid pigmentation after fertilization, whereas others, such as mice, become pigmented only several days after birth.
Interspecies difference in the regulation of melanocyte development by SOX10 and MITF.
SOX10 和 MITF 对黑素细胞发育调控的种间差异
阅读:9
作者:Hou Ling, Arnheiter Heinz, Pavan William J
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2006 | 起止号: | 2006 Jun 13; 103(24):9081-5 |
| doi: | 10.1073/pnas.0603114103 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
