Divergent Immune-Metabolic Profiles in Endometriosis and Ovarian Cancer: A Cross-Sectional Analysis.

子宫内膜异位症和卵巢癌的免疫代谢特征存在差异:一项横断面分析

阅读:7
作者:Neri Manuela, Sanna Elisabetta, Ferrari Paolo Albino, Madeddu Clelia, Lai Eleonora, Vallerino Valerio, Macciò Antonio
BACKGROUND/OBJECTIVES: Endometriosis and high-grade serous ovarian cancer (HGS-OC) share common features within the peritoneal immune microenvironment, yet they exhibit divergent clinical outcomes. This study aimed to dissect the immune-metabolic landscape of the peritoneal cavity in patients with endometriosis and ovarian cancer by evaluating macrophage polarization, intracellular signaling pathways, and iron-driven oxidative stress. METHODS: A prospective cohort study enrolled 40 patients with endometriosis, 198 with ascitic ovarian cancer (178 HGS-OC), and 200 controls with benign gynecological conditions. Peritoneal and peripheral blood samples were analyzed via flow cytometry for macrophage (M1/M2) polarization markers, mTOR/AKT expression, and glucose uptake. Inflammatory markers (IL-6, CRP), oxidative stress (ROS), and iron metabolism parameters (hepcidin, ferritin, transferrin, serum/free iron) were quantified. RESULTS: HGS-OC displayed a predominance of M1-polarized tumor-associated macrophages (TAMs) (CD14⁺/CD80⁺/Glut1⁺) and a high M1/M2 ratio (2.5 vs. 0.8 and 0.9; p = 0.019), correlating positively with IL-6 (p = 0.015), ROS (p = 0.023), hepcidin (p = 0.038), and ferritin (p = 0.043). Conversely, endometriosis showed a dominant M2 profile (CD14⁺/CD163⁺), elevated intracellular mTOR and AKT expression in both TAMs and epithelial cells (p < 0.01), and significantly higher ascitic ROS and free iron levels (p = 0.047 and p < 0.0001, respectively). In endometriosis, the M1/M2 ratio correlated inversely with free iron (p = 0.041), while ROS levels were directly associated with iron overload (p = 0.0034). CONCLUSIONS: Endometriosis exhibits a distinct immune-metabolic phenotype characterized by M2 macrophage predominance and iron-induced oxidative stress, contrasting with the inflammatory, M1-rich profile of HGS-OC. These findings suggest that iron metabolism and macrophage plasticity contribute to disease persistence in endometriosis and may inform future immunomodulatory strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。