Amplification-free, OR-gated CRISPR-Cascade reaction for pathogen detection in blood samples.

无需扩增、OR门控的CRISPR级联反应用于检测血液样本中的病原体

阅读:5
作者:Lim Jongwon, Van An Bao, Koprowski Katherine, Wester Matthew, Valera Enrique, Bashir Rashid
Rapid and accurate detection of DNA from disease-causing pathogens is essential for controlling the spread of infections and administering timely treatments. While traditional molecular diagnostics techniques like PCR are highly sensitive, they include nucleic acid amplification and many need to be performed in centralized laboratories, limiting their utility in point-of-care settings. Recent advances in CRISPR-based diagnostics (CRISPR-Dx) have demonstrated the potential for highly specific molecular detection, but the sensitivity is often constrained by the slow trans-cleavage activity of Cas enzymes, necessitating preamplification of target nucleic acids. In this study, we present a CRISPR-Cascade assay that overcomes these limitations by integrating a positive feedback loop that enables nucleic acid amplification-free detection of pathogenic DNA at atto-molar levels and achieves a signal-to-noise ratio greater than 1.3 within just 10 min. The versatility of the assay is demonstrated through the detection of bloodstream infection pathogens, including Methicillin-Sensitive Staphylococcus aureus (MSSA), Methicillin-Resistant Staphylococcus aureus (MRSA), Escherichia coli, and Hepatitis B Virus (HBV) spiked in whole blood samples. Additionally, we introduce a multiplexing OR-function logic gate, further enhancing the potential of the CRISPR-Cascade assay for rapid and accurate diagnostics in clinical settings. Our findings highlight the ability of the CRISPR-Cascade assay to provide highly sensitive and specific molecular detection, paving the way for advanced applications in point-of-care diagnostics and beyond.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。