Physicochemical properties of the vacuolar membrane and cellular factors determine formation of vacuolar invaginations

液泡膜的物理化学性质和细胞因素决定液泡内陷的形成

阅读:8
作者:Yoko Kimura, Takuma Tsuji, Yosuke Shimizu, Yuki Watanabe, Masafumi Kimura, Toyoshi Fujimoto, Miyuki Higuchi

Abstract

Vacuoles change their morphology in response to stress. In yeast exposed to chronically high temperatures, vacuolar membranes get deformed and invaginations are formed. We show that phase-separation of vacuolar membrane occurred after heat stress leading to the formation of the invagination. In addition, Hfl1, a vacuolar membrane-localized Atg8-binding protein, was found to suppress the excess vacuolar invaginations after heat stress. At that time, Hfl1 formed foci at the neck of the invaginations in wild-type cells, whereas it was efficiently degraded in the vacuole in the atg8Δ mutant. Genetic analysis showed that the endosomal sorting complex required for transport machinery was necessary to form the invaginations irrespective of Atg8 or Hfl1. In contrast, a combined mutation with the vacuole BAR domain protein Ivy1 led to vacuoles in hfl1Δivy1Δ and atg8Δivy1Δ mutants having constitutively invaginated structures; moreover, these mutants showed stress-sensitive phenotypes. Our findings suggest that vacuolar invaginations result from the combination of changes in the physiochemical properties of the vacuolar membrane and other cellular factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。