3-Monothiopomalidomide, a new immunomodulatory imide drug (IMiD), blunts inflammation and mitigates ischemic stroke in the rat.

3-单硫代马来度胺是一种新型免疫调节酰亚胺药物(IMiD),可减轻炎症并缓解大鼠缺血性中风

阅读:7
作者:Chen Kai-Yun, Hsueh Shih-Chang, Parekh Pathik, Batsaikhan Buyandelger, Tweedie David, Luo Weiming, Patel Chirag, Chiang Yung-Hsiao, Bambakidis Nicholas, Hoffer Barry J, Huang Chi-Zong, Yu Seong-Jin, Wu Kuo-Jen, Wang Yun, Hong Eunji, Kim Dong Seok, Greig Nigel H
An overactive neuroinflammatory response is often evident in the elderly and is a significant contributor to brain tissue damage following acute ischemic stroke. Such an inflammatory response is largely mediated by microglial cells and peripheral blood mononuclear cells (PBMCs). Classical anti-inflammatory agents have not proved clinically effective in mitigating the impact of ischemic stroke but have highlighted targets for new drug development, in particular excessive proinflammatory cytokine release. The immunomodulatory imide drug (IMiD) class has shown potential in reducing neuroinflammation and switching microglial phenotypic expression away from a proinflammatory to a regenerative anti-inflammatory one. 3-Monothiopomalidomide (3-MP), a new IMiD, has a brain/plasma concentration ratio of 0.5 to 0.6, an oral bioavailability of 38.5%, and a monophasic disappearance of half-life 3.2 h following oral administration. 3-MP pretreatment mitigates lipopolysaccharide (LPS)-induced inflammation in cellular human PBMCs and, in rat studies, 3-MP pretreatment lowers proinflammatory cytokine levels in the conditioned media and in plasma and the brain, respectively. Administered systemically to rats challenged with middle cerebral artery occlusion (MCAo) and reperfusion, 3-MP post-MCAo treatment reduced infarction volume; improved body asymmetry, a behavioral measure of stroke impact; and lowered inflammation. In summary, 3-MP exerted neuroprotective effects via anti-inflammatory actions against MCAo-induced ischemic injury and represents a therapeutic that warrants further investigation as a treatment for brain damage and related disorders associated with excessive inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。