Dual Effect of 4-Methylumbelliferone on INS1E Cells: Enhancing Migration and Glucose-Stimulated Insulin Secretion.

4-甲基伞形酮对INS1E细胞的双重作用:增强细胞迁移和葡萄糖刺激的胰岛素分泌

阅读:15
作者:Adamo Giorgia, Romancino Daniele, Gargano Paola, Sarullo Marta, Nicosia Aldo, Picciotto Sabrina, Smeraldi Giulia, Bongiovanni Antonella, Salamone Monica
Recent studies have demonstrated that the coumarin derivative 4-Methylumbelliferone (4MU) has an antidiabetic effect in rodent models. 4MU is known to decrease the availability of hyaluronan (HA) substrates and inhibit the activity of different HA synthases. Nevertheless, it has been observed that 4MU may also affect cellular metabolism. In this study, we utilize the rat insulinoma beta cell line (INS-1E) cultured in both two-dimensional (2D) and three-dimensional (3D) experimental settings (pseudo islets), as an in vitro model to study beta cell functionality. For the first time, we observed that treating INS1E cells with 4MU results in improved insulin secretion. Additionally, we discovered that 4MU treatment elicited morphological changes from multilayer to monolayer conditions, along with a varied distribution of insulin granules and cell adhesion properties. Notably, we found that insulin secretion is not correlated with HA production. The same result was observed in co-culture experiments involving INS-1E cells and stromal vascular fraction (SVF) from adipose tissue. These experiments aim to investigate the effects of 4MU on beta cells in the context of its potential use in early-stage type 1 diabetes and in enhancing islet transplantation outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。