Recent studies have demonstrated that the coumarin derivative 4-Methylumbelliferone (4MU) has an antidiabetic effect in rodent models. 4MU is known to decrease the availability of hyaluronan (HA) substrates and inhibit the activity of different HA synthases. Nevertheless, it has been observed that 4MU may also affect cellular metabolism. In this study, we utilize the rat insulinoma beta cell line (INS-1E) cultured in both two-dimensional (2D) and three-dimensional (3D) experimental settings (pseudo islets), as an in vitro model to study beta cell functionality. For the first time, we observed that treating INS1E cells with 4MU results in improved insulin secretion. Additionally, we discovered that 4MU treatment elicited morphological changes from multilayer to monolayer conditions, along with a varied distribution of insulin granules and cell adhesion properties. Notably, we found that insulin secretion is not correlated with HA production. The same result was observed in co-culture experiments involving INS-1E cells and stromal vascular fraction (SVF) from adipose tissue. These experiments aim to investigate the effects of 4MU on beta cells in the context of its potential use in early-stage type 1 diabetes and in enhancing islet transplantation outcomes.
Dual Effect of 4-Methylumbelliferone on INS1E Cells: Enhancing Migration and Glucose-Stimulated Insulin Secretion.
4-甲基伞形酮对INS1E细胞的双重作用:增强细胞迁移和葡萄糖刺激的胰岛素分泌
阅读:7
作者:Adamo Giorgia, Romancino Daniele, Gargano Paola, Sarullo Marta, Nicosia Aldo, Picciotto Sabrina, Smeraldi Giulia, Bongiovanni Antonella, Salamone Monica
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 7; 26(15):7637 |
| doi: | 10.3390/ijms26157637 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
