Human organoids for rapid validation of gene variants linked to cochlear malformations.

利用人类类器官快速验证与耳蜗畸形相关的基因变异

阅读:9
作者:Zafeer Mohammad Faraz, Ramzan Memoona, Duman Duygu, Mutlu Ahmet, Seyhan Serhat, Kalcioglu M Tayyar, Fitoz Suat, DeRosa Brooke A, Guo Shengru, Dykxhoorn Derek M, Tekin Mustafa
Developmental anomalies of the hearing organ, the cochlea, are diagnosed in approximately one-fourth of individuals with congenital. The majority of patients with cochlear malformations remain etiologically undiagnosed due to insufficient knowledge about underlying genes or the inability to make conclusive interpretations of identified genetic variants. We used exome sequencing for the genetic evaluation of hearing loss associated with cochlear malformations in three probands from unrelated families deafness. We subsequently generated monoclonal induced pluripotent stem cell (iPSC) lines, bearing patient-specific knockins and knockouts using CRISPR/Cas9 to assess pathogenicity of candidate variants. We detected FGF3 (p.Arg165Gly) and GREB1L (p.Cys186Arg), variants of uncertain significance in two recognized genes for deafness, and PBXIP1(p.Trp574*) in a candidate gene. Upon differentiation of iPSCs towards inner ear organoids, we observed developmental aberrations in knockout lines compared to their isogenic controls. Patient-specific single nucleotide variants (SNVs) showed similar abnormalities as the knockout lines, functionally supporting their causality in the observed phenotype. Therefore, we present human inner ear organoids as a potential tool to validate the pathogenicity of DNA variants associated with cochlear malformations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。