Impact on Experimental Colitis of Vitamin D Receptor Deletion in Intestinal Epithelial or Myeloid Cells

肠上皮或髓系细胞维生素 D 受体缺失对实验性结肠炎的影响

阅读:7
作者:Carlien Leyssens, Lieve Verlinden, Gert De Hertogh, Shigeaki Kato, Conny Gysemans, Chantal Mathieu, Geert Carmeliet, Annemieke Verstuyf

Abstract

Inflammatory bowel diseases are gastrointestinal diseases that include Crohn disease and ulcerative colitis. The chronic inflammation is thought to result from an excessive inflammatory response to environmental factors such as luminal bacteria in genetically predisposed individuals. Studies have revealed that mice with impaired vitamin D signaling are more susceptible to experimental colitis. To better understand the contribution of vitamin D signaling in different cells of the gut to this disease, we investigated the effects of intestinal-specific or myeloid vitamin D receptor deletion. Our study addressed the importance of vitamin D receptor expression in intestinal epithelial cells using intestine-specific vitamin D receptor null mice and the contribution of vitamin D receptor expression in macrophages and granulocytes using myeloid-specific vitamin D receptor null mice in a dextran sodium sulfate model for experimental colitis. Loss of intestinal vitamin D receptor expression had no substantial effect on the clinical parameters of colitis and did not manifestly change mucosal cytokine expression. Inactivation of the vitamin D receptor in macrophages and granulocytes marginally affected colitis-associated symptoms but resulted in increased proinflammatory cytokine and increased β-defensin-1 expression in the colon descendens of mice with colitis. Intestinal deletion of the vitamin D receptor did not aggravate symptoms of chemically induced colitis. Loss of the vitamin D receptor in macrophages and granulocytes mildly affected colitis-associated symptoms but greatly increased proinflammatory cytokine expression in the inflamed colon, suggesting a prominent role for innate immune cell vitamin D signaling in controlling gut inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。