Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline. Metabolic dysfunctions, particularly type 2 diabetes mellitus (T2DM), have been implicated in AD pathogenesis, highlighting the potential for novel therapeutic approaches targeting shared underlying mechanisms. Here, we investigate sodium-glucose cotransporter 2 (SGLT2) inhibition as a therapeutic strategy for AD using Enavogliflozin, a potent SGLT2 inhibitor, in the 5XFAD mouse model. Five-month-old 5XFAD mice were treated with Enavogliflozin (0.1 or 1âmg/kg) or vehicle for 8âweeks. The higher dose significantly improved cognitive performance in Y-maze and Morris Water Maze tests, which correlated with enhanced synaptic plasticity and increased acetylcholine levels. Moreover, Enavogliflozin treatment reduced Aβ pathology and plaque burden, particularly affecting larger plaques. Mechanistically, SGLT2 inhibition attenuated neuroinflammation by suppressing NF-κB signaling and proinflammatory cytokine production while promoting microglial recruitment to plaques. In vitro and ex vivo analyses further revealed that Enavogliflozin enhances microglial phagocytic capacity via AMPK-mediated mitochondrial biogenesis and function. These findings highlight the multifaceted neuroprotective effects of SGLT2 inhibition in AD, demonstrating its potential to mitigate pathology and improve cognitive function. By uncovering its impact on neuroinflammation and microglial function, this study establishes SGLT2 inhibition as a promising therapeutic avenue for AD and other neurodegenerative disorders.
SGLT2 Inhibition by Enavogliflozin Significantly Reduces Aβ Pathology and Restores Cognitive Function via Upregulation of Microglial AMPK Signaling in 5XFAD Mouse Model of Alzheimer's Disease.
恩格列净通过上调小胶质细胞AMPK信号通路,显著抑制SGLT2,从而减少5XFAD阿尔茨海默病小鼠模型中的Aβ病理并恢复认知功能
阅读:7
作者:Han Jihui, Song Jaehoon, Jung Eun Sun, Choi Ji Won, Ji Hye Young, Mook-Jung Inhee
| 期刊: | Aging Cell | 影响因子: | 7.100 |
| 时间: | 2025 | 起止号: | 2025 Aug;24(8):e70101 |
| doi: | 10.1111/acel.70101 | 种属: | Mouse |
| 研究方向: | 信号转导、细胞生物学 | 信号通路: | AMPK |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
