Schwann cells are vital to development and maintenance of the peripheral nervous system and their dysfunction has been implicated in a range of neurological and neoplastic disorders, including NF2-related schwannomatosis (NF2-SWN). We have developed a novel human induced pluripotent stem cell (hiPSC) model for the study of Schwann cell differentiation in health and disease. We performed transcriptomic, immunofluorescence, and morphological analysis of hiPSC derived Schwann cell precursors (SPCs) and terminally differentiated Schwann cells (SCs) representing distinct stages of development. To further validate our findings, we performed integrated, cross-species analyses across multiple external datasets at bulk and single cell resolution. Our hiPSC model of Schwann cell development shared overlapping gene expression signatures with human amniotic mesenchymal stem cell (hAMSCs) derived SCs and in vivo mouse models, but also revealed unique features that may reflect species-specific aspects of Schwann cell biology. Moreover, we have identified gene co-expression modules that are dynamically regulated during hiPSC to SC differentiation associated with ear and neural development, cell fate determination, the NF2 gene, and extracellular matrix (ECM) organization. Through integrated analysis of multiple datasets and genetic disruption of NF2 via CRISPR-Cas9 gene editing in hiPSC derived SCPs, we have identified a series of novel ECM associated genes regulated by Merlin. Our hiPSC model further provides a tractable platform for studying Schwann cell development in the context of rare diseases such as NF2-SWN which lack effective medical therapies.
An induced pluripotent stem cell model of Schwann cell differentiation reveals NF2- related gene regulatory networks.
利用诱导多能干细胞模型研究雪旺细胞分化,揭示了NF2相关基因调控网络
阅读:8
作者:Lazaro Olivia, Li Sihong, Carter William, Smiley Jake, Awosika Oluwamayowa, Robertson Sylvia, Haskell Angela, Hinkel Raven, Hickey Brooke E, Angus Steven P, House Austin, Clapp D Wade, Syed Abdul Q, Johnson Travis S, Rhodes Steven D
| 期刊: | Res Sq | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 16 |
| doi: | 10.21203/rs.3.rs-6775534/v1 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
