Transitory Schwann Cell Precursor and hybrid states underpin melanoma therapy resistance and metastasis.

短暂的雪旺细胞前体和混合状态是黑色素瘤治疗耐药性和转移的基础

阅读:5
作者:Gopalan Vishaka, Wong Chun Wai, Leshem Rotem, Owen Luke, Vallius Tuulia, Shi Yingxiao, Jiang Yuhong, Pérez-Guijarro Eva, Wu Emily, Chin Sung, Ebersole Jessica, Smith Cari, Sassano Antonella, Constantino Maira Alves, Haley Michael J, Livak Ferenc, Simpson R Mark, Day Chi-Ping, Hurlstone Adam, Hannenhalli Sridhar, Merlino Glenn, Marie Kerrie L
Melanoma plasticity, driven by phenotype state switching, underlies clinically relevant traits such as metastasis and therapy resistance. As melanoma progression is thought to recapitulate aspects of neural crest cell (NCC) development, understanding embryonic melanocyte specification and lineage fate decisions of closely related NCCs may illuminate the pathways co-opted during disease evolution. Here, we use a mouse model to isolate and sequence Dopachrome tautomerase (Dct) expressing NCCs, the precursors of melanocytes, at two key developmental stages. We classify these lineages and devise a Developmental Gene Module (DGM) scoring system to interrogate lineage state switching in melanoma samples. In bulk transcriptomes, activation of DGMs representing embryonic Schwann Cell Precursors (SCPs)-multipotent stem cells-in patient tumors predicts poor response to immune checkpoint inhibitors (ICI). Co-activation of SCP and Mesenchymal-like (Mes.) modules further correlates with resistance to MAPK inhibitors. Notably, single-cell analyses reveal that melanoma cells can simultaneously express multiple DGMs, forming "hybrid" states. Cells in a hybrid Neural/SCP state are enriched in early metastasis and ICI-resistant tumors and are insensitive to inflammatory stimuli. We demonstrate that targeting Hdac2, a histone deacetylase associated with this Neural/SCP hybrid state, promotes a mesenchymal-like state switch, remodels the tumor microenvironment, and sensitizes melanoma cells to TNFα and tumors to ICI therapy. Our methodology thus reveals dynamic patterns of lineage state switching correlated with melanoma tumor evolution to drive insight into new therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。