Effects of HMG CoA reductase (HMGCR) deficiency on skeletal muscle development.

HMG CoA还原酶(HMGCR)缺乏对骨骼肌发育的影响

阅读:6
作者:Gunasekaran Mekala, Littel Hannah R, Wells Natalya M, Turner Johnnie, Campos Gloriana, Venigalla Sree, Estrella Elicia A, Ghosh Partha S, Daugherty Audrey L, Stafki Seth A, Kunkel Louis M, Foley A Reghan, Donkervoort Sandra, Bönnemann Carsten G, Toledo-Bravo de Laguna Laura, Nascimento Andres, Natera-de Benito Daniel, Draper Isabelle, Bruels Christine C, Pacak Christina A, Kang Peter B
Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern. Statins inhibit HMGCR activity to generate their cholesterol-lowering effects and are known to cause multiple types of adverse effects on skeletal muscle, while the antibodies associated with anti-HMGCR myopathy specifically target this enzyme. The mechanism linking pathogenic variants in HMGCR with skeletal muscle dysfunction is unclear. We knocked down Hmgcr in mouse skeletal myoblasts, knocked down hmgcr in Drosophila, and expressed three pathogenic HMGCR variants (c.1327C>T, p.Arg443Trp; c.1522_1524delTCT, p.Ser508del; and c.1621G>A, p.Ala541Thr) in Hmgcr knockdown mouse myoblasts. Hmgcr deficiency was associated with decreased proliferation, increased apoptosis, and impaired myotube fusion. Transcriptome sequencing of Hmgcr knockdown versus control myoblasts revealed differential expression involving mitochondrial function, with corresponding differences in cellular oxygen consumption rates. Both ubiquitous and muscle-specific knockdown of hmgcr in Drosophila led to lethality. Overexpression of reference HMGCR cDNA rescued myotube fusion in knockdown cells, whereas overexpression of the pathogenic variants of HMGCR cDNA did not. These results suggest that the three HMGCR-related muscle diseases share disease mechanisms related to skeletal muscle development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。