Mitochondrial aldehyde dehydrogenase restores the migratory capacity inhibited by high glucose-induced hyperosmolality.

线粒体醛脱氢酶可恢复高葡萄糖诱导的高渗状态所抑制的迁移能力

阅读:5
作者:Huang Chi-Cheng, Chen Yuh-Lien, Chien Chung-Liang
Cell migration, which is often impaired under high glucose (HG) conditions, plays a crucial role in the pathogenesis of various diabetic complications. This study investigates the role of mitochondrial aldehyde dehydrogenase (ALDH2) in the HG-induced migratory inhibition. Using fibroblasts sub-cultured in HG medium as a cell model of chronic hyperglycemia, we found that prolonged exposure to HG stress inhibited cell migration via a novel mechanism independent of oxidative stress or cell death. By increasing osmolality, HG induced perinuclear clustering of mitochondria, enhanced focal adhesion maturation, and caused the cells to be less responsive to migratory cues. The pharmacological inhibition of ALDH2 exaggerated this phenomenon, while ALDH2 overexpression protected cells from the migratory impairment caused by HG-induced hyperosmolality. Cells with ALDH2 overexpression exhibited less mature focal adhesions and longer mitochondrial network, suggesting that ALDH2 might preserve mitochondrial integrity to facilitate the focal adhesion turnover during cell migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。