Pre-formation loading of extracellular vesicles with exogenous molecules using photoporation.

利用光穿孔技术将外源分子预先加载到细胞外囊泡中

阅读:13
作者:Ramon Jana, Pinheiro Cláudio, Vandendriessche Charysse, Lozano-Andrés Estefanía, De Keersmaecker Herlinde, Punj Deep, Fraire Juan C, Geeurickx Edward, Wauben Marca H M, Vader Pieter, Vandenbroucke Roosmarijn E, Hendrix An, Stremersch Stephan, De Smedt Stefaan C, Raemdonck Koen, Braeckmans Kevin
Despite the natural capacity of extracellular vesicles (EVs) to encapsulate intracellular compounds and transfer these to nearby or distant recipient cells, the intentional loading of EVs with cargo molecules remains a challenging endeavor. Pre-formation EV loading (i.e., during EV biogenesis), offers advantages compared to post-formation loading (i.e., after EV isolation), as EV integrity and composition are minimally perturbed. Pre-formation EV loading is primarily achieved through the genetic engineering of the producer cell, which is time consuming and not very flexible regarding the types of molecules that can be incorporated into EVs. In this work, we investigated the possibility of loading cargo molecules into EVs by delivering the cargo directly into the cytosol of the producer cells, which can subsequently be encapsulated into EVs as they are formed. For the cytosolic delivery of cargo molecules, we evaluated the use of photoporation. This membrane disruption technology has been demonstrated to successfully deliver a broad range of cargo molecules into virtually any cell type, while minimally impacting the cell's normal functioning and homeostasis. As a proof-of-concept, we delivered fluorescently labeled dextran macromolecules and anti-EGFP nanobodies into HEK293T cells genetically engineered with gag-EGFP fusion proteins, which are shuttled into EVs. Colocalization of cargo and EGFP fluorescence in secreted EVs can then serve as a convenient readout for successful EV loading. We established that photoporation had minimal impact on EV characteristics such as concentration, size, zeta potential and the enrichment of EV tetraspanin membrane surface molecules. We found that using EGFP-targeted nanobodies resulted in up to 53% loaded EVs (relative to the amount of EGFP EVs), while non-targeted dextran molecules produced on average 12% loaded EVs (relative to the amount of EGFP EVs). These results highlight the promise of photoporation for pre-formation loading of EVs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。